Composite Finite Elements for 3D Image Based Computing
نویسندگان
چکیده
We present an algorithmical concept for modeling and simulation with partial differential equations (PDEs) in image based computing where the computational geometry is defined through previously segmented image data. Such problems occur in applications from biology and medicine where the underlying image data has been acquired through e. g. computed tomography (CT), magnetic resonance imaging (MRI) or electron microscopy (EM). Based on a level-set description of the computational domain, our approach is capable of automatically providing suitable composite finite element functions that resolve the complicated shapes in the medical/biological data set. It is efficient in the sense that the traversal of the grid (and thus assembling matrices for finite element computations) inherits the efficiency of uniform grids away from complicated structures. The method’s efficiency heavily depends on precomputed lookup tables in the vicinity of the domain boundary or interface. A suitable multigrid method is used for an efficient solution of the systems of equations resulting from the composite finite element discretization. The paper focuses on both algorithmical and implementational details. Scalar and vector valued model problems as well as real applications underline the usability of our approach.
منابع مشابه
Mechanical Buckling Analysis of Composite Annular Sector Plate with Bean-Shaped Cut-Out using Three Dimensional Finite Element Method
In this paper, mechanical buckling analysis of composite annular sector plates with bean shape cut out is studied. Composite material sector plate made of Glass-Epoxy and Graphite-Epoxy with eight layers with same thickness but different fiber angles for each layer. Mechanical loading to form of uniform pressure loading in radial, environmental and biaxial directions is assumed. The method used...
متن کاملFast System Matrix Calculation in CT Iterative Reconstruction
Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...
متن کاملA New Approach to Buckling Analysis of Lattice Composite Structures
Buckling strength of composite latticed cylindrical shells is one of the important parameters for studying the failure of these structures. In this paper, new governing differential equations are derived for latticed cylindrical shells and their critical buckling axial loads. The nested structure under compressive axial buckling load was analyzed. Finite Element Method (FEM) was applied to mode...
متن کاملA Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results
This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...
متن کاملA Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results
This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...
متن کامل